Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

What Happens Inside Lentivirus or Influenza Virus Infected Cells: Insights into Regulation of Cellular and Viral Protein Synthesis

Identifieur interne : 003D01 ( Main/Exploration ); précédent : 003D00; suivant : 003D02

What Happens Inside Lentivirus or Influenza Virus Infected Cells: Insights into Regulation of Cellular and Viral Protein Synthesis

Auteurs : Michael Gale Jr. ; Michael G. Katze

Source :

RBID : ISTEX:899EA0A996F86B47C980585D2F527964DD133E4F

English descriptors

Abstract

Abstract: Efficient manipulation of the regulatory mechanisms controlling host cell gene expression provides the means for productive infection by animal viruses. Upon infecting the host cell, viruses must: (i) bypass the cellular antiviral defense mechanisms to prevent the translational blocks imposed by the interferon pathway; and (ii) effectively “hijack” the host protein synthetic machinery into mass production of virion protein components. The multicomponent regulatory nature of cellular gene expression has provided the means of selecting for a diverse range of mechanisms utilized by animal viruses to ensure that replication efficiency is maintained throughout the virus life cycle. One important research component of the careful examination of gene regulation is those studies that focus on elucidating the mechanisms by which viruses control mRNA translation during host cell infection. Much of the work in our laboratory has focused on elucidating the strategies by which human immunodeficiency virus type 1 and influenza virus regulate protein synthesis during infection. Here we describe the ways in which these two distinctly different RNA viruses ensure the selective and efficient translation of their viral mRNAs in infected cells. These strategies include circumvention of the deleterious effects associated with activation of the interferon-induced protein kinase, PKR. Herein we describe our methodologies designed to elucidate the translational regulation in cells infected by these viruses. We conclude with a brief summary of new directions, utilizing these methods, taken toward understanding the translational control mechanisms imposed by these viral systems, and how our studies of virally infected cells have allowed us to identify growth-regulating components of normal, uninfected cells.

Url:
DOI: 10.1006/meth.1996.0436


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">What Happens Inside Lentivirus or Influenza Virus Infected Cells: Insights into Regulation of Cellular and Viral Protein Synthesis</title>
<author>
<name sortKey="Gale Jr, Michael" sort="Gale Jr, Michael" uniqKey="Gale Jr M" first="Michael" last="Gale Jr.">Michael Gale Jr.</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G." last="Katze">Michael G. Katze</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:899EA0A996F86B47C980585D2F527964DD133E4F</idno>
<date when="1997" year="1997">1997</date>
<idno type="doi">10.1006/meth.1996.0436</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-B5V7CRNG-0/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002546</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002546</idno>
<idno type="wicri:Area/Istex/Curation">002546</idno>
<idno type="wicri:Area/Istex/Checkpoint">001477</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001477</idno>
<idno type="wicri:doubleKey">1046-2023:1997:Gale Jr M:what:happens:inside</idno>
<idno type="wicri:Area/Main/Merge">003D56</idno>
<idno type="wicri:Area/Main/Curation">003D01</idno>
<idno type="wicri:Area/Main/Exploration">003D01</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">What Happens Inside Lentivirus or Influenza Virus Infected Cells: Insights into Regulation of Cellular and Viral Protein Synthesis</title>
<author>
<name sortKey="Gale Jr, Michael" sort="Gale Jr, Michael" uniqKey="Gale Jr M" first="Michael" last="Gale Jr.">Michael Gale Jr.</name>
<affiliation>
<wicri:noCountry code="subField">98195</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G." last="Katze">Michael G. Katze</name>
<affiliation>
<wicri:noCountry code="subField">98195</wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Methods</title>
<title level="j" type="abbrev">YMETH</title>
<idno type="ISSN">1046-2023</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997">1997</date>
<biblScope unit="volume">11</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="383">383</biblScope>
<biblScope unit="page" to="401">401</biblScope>
</imprint>
<idno type="ISSN">1046-2023</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1046-2023</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acad</term>
<term>Academic press</term>
<term>Actin</term>
<term>Activator</term>
<term>Animal viruses</term>
<term>Antiviral effects</term>
<term>Assay</term>
<term>Binding buffer</term>
<term>Binding reaction</term>
<term>Biochem</term>
<term>Biol</term>
<term>Boehringer mannheim</term>
<term>Cell biol</term>
<term>Cell equivalents</term>
<term>Cell extracts</term>
<term>Cell growth</term>
<term>Cell lines</term>
<term>Cell monolayers</term>
<term>Cellular</term>
<term>Cellular mrna</term>
<term>Cellular mrnas</term>
<term>Cellular protein synthesis</term>
<term>Cellular proteins</term>
<term>Chem</term>
<term>Cold spring harbor</term>
<term>Cold spring harbor laboratory press</term>
<term>Competitive inhibitor</term>
<term>Complete medium</term>
<term>Complex formation</term>
<term>Culture medium</term>
<term>Culture supernatants</term>
<term>Days postinfection</term>
<term>Degradation</term>
<term>Degradation assay</term>
<term>Direct regulator</term>
<term>Edta</term>
<term>Efficient translation</term>
<term>Electrophoresed</term>
<term>Equal volume</term>
<term>Extract</term>
<term>Final concentration</term>
<term>Final volume</term>
<term>Further incubation</term>
<term>Fusion protein</term>
<term>Fusion proteins</term>
<term>Gale</term>
<term>Gene</term>
<term>Gene expression</term>
<term>Glycerol</term>
<term>Hela</term>
<term>Hela cell extracts</term>
<term>Hela cells</term>
<term>Histidine</term>
<term>Host cell</term>
<term>Host cell protein synthesis</term>
<term>Hours postinfection</term>
<term>Hovanessian</term>
<term>Immunoblot analysis</term>
<term>Immunoprecipitated extracts</term>
<term>Immunoprecipitation</term>
<term>Immunoprecipitation analysis</term>
<term>Infection</term>
<term>Infectious virus</term>
<term>Influenza</term>
<term>Influenza cells</term>
<term>Influenza virus</term>
<term>Influenza virus encodes</term>
<term>Influenza virus infection</term>
<term>Influenza virus mrnas</term>
<term>Influenza viruses</term>
<term>Inhibitor</term>
<term>Interferon</term>
<term>Katze</term>
<term>Kinase</term>
<term>Kinase activity</term>
<term>Krug</term>
<term>Liquid nitrogen</term>
<term>Lymphoid cell lines</term>
<term>Lysis buffer</term>
<term>Malignant transformation</term>
<term>Many viruses</term>
<term>Metaa</term>
<term>Methods enzymol</term>
<term>Mgcl2</term>
<term>Mobility shift analysis</term>
<term>Monoclonal antibody</term>
<term>Mrna</term>
<term>Mrna degradation assay</term>
<term>National institutes</term>
<term>Natl</term>
<term>Negative control</term>
<term>Northern blot analysis</term>
<term>Novel protein</term>
<term>Pathway</term>
<term>Polyclonal antibody</term>
<term>Postinfection</term>
<term>Primary antibody</term>
<term>Proc</term>
<term>Productive infection</term>
<term>Protein</term>
<term>Protein disruption buffer</term>
<term>Protein interactions</term>
<term>Protein kinase</term>
<term>Protein synthesis</term>
<term>Protein synthesis initiation</term>
<term>Reaction mixture</term>
<term>Reaction products</term>
<term>Recent studies</term>
<term>Recombinant</term>
<term>Regulatory pathway</term>
<term>Replication</term>
<term>Ribonuclease activity</term>
<term>Rna</term>
<term>Room temperature</term>
<term>Sample buffer</term>
<term>Seap</term>
<term>Seap activity</term>
<term>Selective translation</term>
<term>Sodium acetate</term>
<term>Sonenberg</term>
<term>Specificity control</term>
<term>Stainless steel dounce homogenizer</term>
<term>Substrate rnas</term>
<term>Supernatant</term>
<term>Time point</term>
<term>Tissue culture flask</term>
<term>Translation products</term>
<term>Translational</term>
<term>Translational control</term>
<term>Translational control mechanisms</term>
<term>Trends biochem</term>
<term>Unattached virus</term>
<term>Uninfected</term>
<term>Uninfected cells</term>
<term>Untranslated region</term>
<term>Viral</term>
<term>Viral infection</term>
<term>Viral mrna</term>
<term>Viral mrna translation</term>
<term>Viral mrnas</term>
<term>Viral protein synthesis</term>
<term>Viral proteins</term>
<term>Viral systems</term>
<term>Viral transcripts</term>
<term>Virally</term>
<term>Virol</term>
<term>Virology</term>
<term>Virus</term>
<term>Virus life cycle</term>
<term>Virus stock</term>
<term>Vivo analysis</term>
<term>Wambach</term>
<term>Wash buffer</term>
<term>Yeast system</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Efficient manipulation of the regulatory mechanisms controlling host cell gene expression provides the means for productive infection by animal viruses. Upon infecting the host cell, viruses must: (i) bypass the cellular antiviral defense mechanisms to prevent the translational blocks imposed by the interferon pathway; and (ii) effectively “hijack” the host protein synthetic machinery into mass production of virion protein components. The multicomponent regulatory nature of cellular gene expression has provided the means of selecting for a diverse range of mechanisms utilized by animal viruses to ensure that replication efficiency is maintained throughout the virus life cycle. One important research component of the careful examination of gene regulation is those studies that focus on elucidating the mechanisms by which viruses control mRNA translation during host cell infection. Much of the work in our laboratory has focused on elucidating the strategies by which human immunodeficiency virus type 1 and influenza virus regulate protein synthesis during infection. Here we describe the ways in which these two distinctly different RNA viruses ensure the selective and efficient translation of their viral mRNAs in infected cells. These strategies include circumvention of the deleterious effects associated with activation of the interferon-induced protein kinase, PKR. Herein we describe our methodologies designed to elucidate the translational regulation in cells infected by these viruses. We conclude with a brief summary of new directions, utilizing these methods, taken toward understanding the translational control mechanisms imposed by these viral systems, and how our studies of virally infected cells have allowed us to identify growth-regulating components of normal, uninfected cells.</div>
</front>
</TEI>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Gale Jr, Michael" sort="Gale Jr, Michael" uniqKey="Gale Jr M" first="Michael" last="Gale Jr.">Michael Gale Jr.</name>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G." last="Katze">Michael G. Katze</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003D01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:899EA0A996F86B47C980585D2F527964DD133E4F
   |texte=   What Happens Inside Lentivirus or Influenza Virus Infected Cells: Insights into Regulation of Cellular and Viral Protein Synthesis
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021